
Semiconductor physics and light-matter interaction

Lecture 6 – 16/10/2024
Occupancy statistics and band filling

- Semiconductors: non-degenerate, intrinsic, degenerate, doped
- Occupancy of donor and acceptor levels
- Charge neutrality condition
- Doped semiconductors – temperature dependence

Carrier transport
- Mobility at moderate electric field
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Summary of Lecture 5: donors and acceptors

Semiconductor physics and light-matter interaction

𝐸௡ ൌ െ13.6 eV ൈ
𝑚∗

𝜀௥ଶ𝑚଴𝑛ଶ

Counts if shallow acceptors or donors
Breaks down at high concentration –

Band tailing effect
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Summary of Lecture 5: density of states and band filling

Semiconductor physics and light-matter interaction



Remark: n and p can be experimentally measured (Hall effect, electrochemical
C-V profiling)
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• When n (or p) << Nc (or Nv)  EF lies in the bandgap

• When n (or p) > Nc (or Nv)  the Fermi level lies within the CB (or VB) 
 The semiconductor is then said to be degenerate
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Fermi level calculation



At equilibrium  same chemical potential, i.e., same EF, across the sample
whatever the semiconducting structure (which remains true for an unbiased
device whatever its complexity)

The np product for a non-degenerate semiconductor is then independent of the Fermi 
level position and is given by:
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For a given semiconductor, np is a function of temperature. This is a mass action law, 
which expresses the thermodynamic equilibrium condition for electrons and holes.
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Thermodynamic equilibrium

!



A pure and perfect semiconductor is intrinsic

The origin of carriers present in the CB and VB is endogenous, i.e., free carriers are 
only due to the thermal activation process of electrons from the VB to the CB

The condition for electrical neutrality throughout the crystal leads to n = p = ni at equilibrium, 
so that: 
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Intrinsic semiconductors

intrinsic
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The value of ni will set the sensitivity of a given 
semiconductor to residual impurities and hence 
the ability to precisely control n- and p-type doping 
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Intrinsic semiconductors

1000/T

!

Room temperature bandgap!



Fermi level position in an intrinsic semiconductor
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Nv and Nc are comparable therefore EF is close to the mid-gap (cf. slide #28, Lecture 5 )
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Intrinsic semiconductors



The Fermi level lies within the CB  Boltzmann approximation is no longer valid (cf. slide #4
and slide #26, Lecture 5)

One may consider as a rough approximation a Heaviside step function to account for the occupancy
statistics:

f(E) = 1 when E < EF
f(E) = 0 when E > EF

Degenerate SC  highly doped
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 n is independent of T

with n > Nc (case of an n-type SC)
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More detailed description to be seen in the exercises !
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Semiconductor – degenerate case



The relationship is not valid anymore in the degenerate case!

A degenerate SC behaves like a metal (but this is not exactly a metal, why?)
We speak about a semimetallic behavior

For n > Nc, the Fermi level position varies as n2/3
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Conduction band
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Semiconductor – degenerate case

-kBT ln(NC/n)

ln n

! 2
inp n



Occupancy of the donor and acceptor levels
(consideration valid only at low temperature or for deep level states)

ND (cm-3) donor concentration with an ionization energy ED (for 1 electron)
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Concentration of neutral donors

Concentration of ionized donors
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Semiconductor – doped case
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-1 = 2 (spin degeneracy factor) and  = 1/kBT

(only 1 electron due to e--e- interaction)  

Thus, the density of ionized donors is
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Occupancy of the donor (and acceptor) levels

12

 To be seen in the exercises !
Very important concept

Number of electrons in state j

Mean number of e- bound to donors
partition function

What happens when:

• T increases ?

• ED increases ?
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Semiconductor – doped case

!



The charge neutrality condition within the crystal implies that positive and negative charges
compensate themselves

+
A Dn N p N  

Charge neutrality condition  the Fermi level is fixed at a given T

Assumption: donors and acceptors are fully ionized at 300 K: 

A Dn N p N  
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Charge neutrality condition

! Always use the appropriate approximation to derive n, p, NA and ND!
The sign of NA and ND will also depend on the experimental situation.  



Diagrammatic example: case of a partially compensated p-type doped sample
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Charge neutrality condition: an illustrative example
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ND donors with an ionization energy ED and without acceptors

Intermediate temperature case:

Donors are fully ionized but no electron coming from the VB

(p = 0)   n = ND
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For a typical doping level of 1017 cm-3 in Si and at 300 K, EF - Ec  -145 meV

The Fermi energy is below the donor state level

Fermi level position
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N-type semiconductor: temperature dependence

Whose position is given by?
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Fermi level energy vs doping

Intrinsic Fermi level position

Fermi level position (= f(NA, ND)



Above a certain temperature, intrinsic ionization is no longer negligible.

Thus, the charge neutrality condition will write as follows:
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For the intermediate temperature range (ni << ND) 
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Saturation regime
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N-type semiconductor: temperature dependence

Cf. slides # 5 & 6 
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N-type semiconductor: temperature dependence



• Saturation regime: n  ND

• The concentration of holes is much lower than that of electrons

- Electrons are called majority carriers
- Holes are called minority carriers

• The conductivity only depends on the donor concentration: 
 extrinsic conductivity ( = ne)
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N-type semiconductor: temperature dependence

Mobility (to be defined)!



1. High temperature range (intrinsic properties)
ni much larger than ND and NA

 the charge neutrality condition is simply equal to n = p = ni

2. Intermediate temperature range (extrinsic properties)
Donors and acceptors are fully ionized

n  ND-NA  constant (n-type doping)
and p  NA-ND  constant (p-type doping)

3. Low temperature range (condensation/impurity regime)
Partial impurity ionization

 the charge neutrality condition is equal to A Dn N p N   
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Doped semiconductor: temperature dependence



Charges
ChargeNatureSymbol

0Neutral acceptor 
concentration

-eIonized acceptor 
concentration

0Neutral donor 
concentration

+eIonized donor 
concentration

-eFree electron 
concentration

n

+eFree hole concentrationp

Charge neutrality condition

Donors and acceptors are fully ionized at 300 K:

NA- = NA ND+ = ND
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Doped semiconductor

Nota bene: When a semiconductor contains both donors and acceptors, it can be said to be compensated because, under 
equilibrium conditions, some of the electrons from the donors will be captured (or compensated) by the acceptors ( a 
compensated sample contains both ionized donors (D+) and acceptors (A-)).

Very important concept !



Carrier transport

22Semiconductor physics and light-matter interaction



Thermal scattering

Origins:
- atoms
- ionized impurities
- defects
- other electrons

Isotropic scattering processes  the net charge displacement is equal to zero
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No longer the case when an electric field is applied (symmetry breaking)
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Thermal equilibrium

F = qE



Nearly-free electrons  molecules in a gas
Maxwell-Boltzmann distribution law:

For an electron gas with n electrons per unit volume, the number of
electrons with a velocity ranging between v and v+dv is given by:

The root-mean-square speed is related to temperature through

* 21 3
2 2th Bm v k T

At 300 K, the electron velocity in Si is about 107 cm s-1

The mean free path  is determined by the time between 2 collisions

c is the mean-free time 

c = 0.1 - 1 ps,  = cvth = 10 to 100 nm
24

 To be seen in the exercises!Equipartition theorem (in 3D)
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Thermal equilibrium
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Condition: moderate electric field

 constant scattering rate, or velocity increase much smaller than vth

F = qE is the force induced by the electric field on the carriers

dt
tdv

mqEF i )(* vi carrier velocity along the electric field

After integration between t0 and t0+t:

t
m
Eqtvi *)( 
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Electron in vacuum 
(non-relativistic case)
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Conductivity with an electric field

Sawtooth behavior



Drude model:
The average scattering time (mean-free time) c is given by 
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The average velocity is then equal to:
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vd is proportional to the electric field (Ohm’s law)

µ is the mobility

vd is the drift velocity
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Conductivity with an electric field

Scattering probability per unit time



• The mobility determines the performance of (opto)electronic devices

• It depends on the scattering rate and effective mass

• Units: cm² V-1 s-1
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Conductivity with an electric field


